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A spherical or cylindrical cavity containing quiescent gas begins to contract a t  high 
constant radial speed, driving an axisymmetric shock wave inward to collapse at the 
centre. We analyse the flow field by expanding the solution in powers of time, and 
calculate 40 terms by delegating the arithmetic to a computer. Analysis of the series 
for the radius of the shock wave confirms Guderley’s local self-similar solution for the 
focusing, including recent refined values for his similarity exponent, and yields higher 
terms in his local expansion. In the range of adiabatic exponent where the Guderley 
solution has been shown not to be unique we find, in accord with a conjecture of 
Gel’fand, that the smallest admissible similarity exponent is realized. 

1. Introduction 
The final collapse of an imploding spherical or cylindrical shock wave, as analysed 

by Guderley (1942), is one of the first examples of a remarkable class of local solutions 
known in Russian as ‘self-similar solutions of the second type’ (Zel’dovich & Raizer 
1967). In contrast to such familiar self-similar solutions of the ‘first type’ as the strong 
point explosion or the boundary layer on a flat plate, the nature of the similarity is 
revealed neither by dimensional analysis nor by other group properties of the problem, 
but only by actually solving the equations as a nonlinear eigenvalue problem (Baren- 
blatt 1979). As a consequence, the similarity exponent turns out to be in general an 
irrational number rather than a simple fraction. Thus Guderley found that the radius 
of a spherical shock wave in a diatomic gas varies locally as the 0.717-power of the 
time measured from the instant of collapse. 

That exponent has been refined by a succession of subsequent investigators, 
eventually to 0.71717450 by Lazarus & Richtmyer (1977). However, Fujimoto & 
Mishkin (1978) have recently advanced the unorthodox claim that Guderley’s problem 
can be solved in closed analytic form to yield instead a value of 0.707. This suggestion 
has been refuted by Lazarus (1980). 

Brushlinskii & Kazhdan (1963) report that the solution is unique only if the adia- 
batic exponent of the gas is less than a critical value, which is 1-87 in the spherical 
case. Above that value there exists a series of eigenvalues for which the solution is 
analytic. On the other hand, Welsh (1967) has suggested that the solution is always 
unique. According to Barenblatt (1979) Gel’fand has conjectured that in reality a 
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solution is always obtained with the smallest similarity exponent in the series, but 
this awaits proof. 

Guderley’s local analysis cannot provide the amplitude of his solution. That could 
be found, and Gel’fand’s conjecture confirmed (and the validity of Fujimoto & 
Mishkin’s analysis tested) by solving a global problem, and pursuing the shock wave 
into its limiting self-similar form a t  the focus. However, existing numerical solutions 
(Perry & Kantrowitz 1951; Payne 1957; Berchenko & Korobeinikov 1976) are not 
sufficiently accurate for that purpose. 

We adopt an alternative approach to the global problem, which consists in solving 
the initial-value problem by expanding the solution in powers of time. This method 
was introduced by Lee (1968) for a cylindrical piston that collapses with speed pro- 
portional to a power of time. He calculated three terms of a double expansion in 
powers of both time and a parameter representing the departure of the shock wave 
from infinite strength. Later, Bach & Lee (1969) carried the same kind of calculation 
to four terms for both cylindrical and spherical waves, using the more complicated 
initial conditions that the flow is produced by the instantaneous deposition of energy 
a t  a finite radius. The first approximation is then the self-similar solution for a strong 
planar blast wave. 

For simplicity, we consider only a spherical or cylindrical piston that collapses 
with constant inward speed, so that  the basic approximation for small time is just 
the flow produced by impulsive motion of a plane piston; and we assume that the 
speed is so great that  the Mach number of the shock wave is effectively infinite (in 
Russian terminology, we neglect the counter-$remure, or make the cold-gas approxi- 
mation), so that we need only a single series. By delegating the mounting arithmetic 
to a computer we have, in a few minutes, calculated 40 terms of the expansion in 
powers of time. 

We find that the range of convergence of the series varies with the radius, but is 
nowhere less than the time for the shock wave to collapse onto the axis. Our 40-term 
expansion therefore describes the whole field accurately up to that instant, except 
in the immediate vicinity of the collapse. There, by analysing the coefficients, we are 
able to extract with good accuracy the singular local structure of the flow. 

2. Solution expanded in powers of time 
We consider a spherical or cylindrical container that is initially of radius R, and 

filled with quiescent perfect gas of density po and adiabatic exponent y. At time 
t = 0 the container begins to contract with a very large constant velocity V ,  driving 
ahead of it a shock wave whose radius R(t) is to be found. 

The equations of continuit’y, momentum, and energy are (Sedov 1959, p. 148) 

av av lap 
-+v-+-- = 0, 
at ar par 

(;+v;); = 0. 
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FIGURE 1. History of converging shock wave in (2, +plane for spherical piston with y = 5. 
m, path of piston; . . . . . , 1-term (planar) approximation to shock wave; - - - , 3-term 
approximation (15) ; __ , full solution. 

Here v is the (outward) radial velocity, a n d j  = 2 for a spherical piston and j = 1 for 
a cylindrical one. At infinite Mach number the Rankine-Hugoniot relations give the 
conditions just behind the shock wave as (Sedov 1959, p. 212) 

p = y+lp, a t  r = R(t) .  
Y-1 

The remaining condition is that of no flow through the piston: 

v = - V a t  r = R,- Vt. (3) 

It is convenient to modify the variables by measuring the distance x inward from 
the original radius, and correspondingly reversing the sign of the velocity by intro- 
ducing u = - v. Then the history of the flow is represented by the (x, t)-diagram of 
figure 1. At small time the flow is approximately that produced by a plane piston 
moving into quiescent gas with speed V. It produces a shock wave moving a t  constant 
speed +(y+ 1) V. Between the piston and the shock wave the gas has constant speed 
u = V, density [ ( y  + l) /(y - l)] p,, and pressure $(y i- I )  po V2. 

To take advantage of the conical nature of this basic flow, we replace x by a variable 

that varies from zero a t  the piston to unity at the basic position of the shock wave. 
Finally, we introduce dimensionless variables by referring lengths to  R,, speed to V ,  
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density to po, pressure to po V2, and time to R,/ V .  Then the differential equations (1) 
become 

[ I -  (1 +icy - 1) 6 )  t ]  [ p z  + (u - 1 - i ( y -  1) 6) - +icy-  1) tap] = i(y- l j j t pu ,  (5a)  aU ac, 
a t  at 

and the boundary conditions ( 2 ) )  (3) a.re 

u = l  at t = O .  (7) 

It seems reasonable to assume that the solution is analytic in time. We therefore 
expand the unknown position of the shock wave in a Taylor series as 

00 

X ( t )  = xntn, 
n = l  

and likewise expand the flow variables as 

m m m 

19) 
n= l  n=l  n = l  

Here our basic solution gives 

Ul = 1 ,  R1= y+l - PI = &(y+l ) ,  x, = +(y+l ) .  y -  1’ (10) 

Substituting into the differential equations ( 5 )  and equating like powers o f t  yields 
a sequence of triads of first-order linear ordinary differential equations for the co- 
efficients U,, R,, P,, which for the second approximation are 

Y u 1 - - ( y - 1 ) ~ R i + : ( y - 1 ) R z  = + ( y + l ) j ,  ( I l a )  
Y-1 

( I l b )  

(1 lc )  

2 
-~U;,+U,+-P;, = 0, 

t(P;l- +y(y - 1) Ri) - (P! - iy(y - 1) R,) = 0. 

Y+l 

The boundary condition (7)  on the piston gives simply Un(0) = 0 for all n > 1. How- 
ever, the jump conditions (6) are imposed a t  the unknown position of the shock wave; 
in order to equate like powers o f t  we must transfer them to the basic position 6 = 1 
by Taylor-series expansion. This gives for the second approximation 

(12) 
4 

Uz( l )  = - X 2 ,  R2(1) = 0, P2(1) = 4X2. 
Y + l  
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The form of this problem suggests that  U,, R,, P2 are linear functions of E. Then it  
is easy to find that 

It is clear that in higher approximations the coefficients U,, R,, Pn are polynomials 
in 6 of degree n - 1, of the form 

n 

Substituting these into the differential equations and transferred shock-wave con- 
ditions, and equating like powers of { as well as t, yields for each approximation a 
system of 3n linear algebraic equations for the coefficients Unk,  Rnk, Pnk and X,, 
whose non-homogeneous terms depend on all previous approximations. 

Solving those equations in the third approximation gives for the position of the 
shock wave 

This result is shown in figure 1 for a spherical shock wave with y = 5. Lee (1968) has 
carried the expansion to this order numerically for a cylindrical piston with y = 5. 
The second and third coefficients in (15) agree with his results to three significant 
figures. 

I n  the special case of a spherical piston with y = 3 we have carried the handcalcu- 
lation to the fourth approximation analytically, which gives X ,  = 9691/2850, and 
to  the fifth approximation numerically, giving X ,  = 7.24262901. The two authors 
checked these tedious hand calculations, which were needed to check in turn and 
debug the computer programs, by carrying them out independently in the Northern 
and Southern hemispheres. 

3. Extension of the series by computer 
To carry the series further, we have independently written computer programs to 

calculate the general term. Both versions consist of some 400 Fortran statements. 
The convective terms introduce quadruple summations into the non-homogeneous 

parts of the momentum and energy equations for unk, R,, and Pnk. Consequently the 
program contains DO-loops nested six deep. These quickly become the most time- 
consuming part of the calculation, so the computing time for the nth approximation 
increases eventually as n6. Thus on an IBM 3033 machine we computed 20 terms in 
6 seconds and 40 terms in 280 seconds. 

Although the coefficients, such as those in (15), are rational fractions when y is 
rational, we compute them in floating-point arithmetic. Comparing the Australian 
and American results, and also double- and quadruple-precision computations, 
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n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

Spherical, 

1~200000000000 
0.186666666667 
0.188345679012 
0.172851981806 
0.1 72 147226896 
0.195748089820 
0.239592510180 
0.303219524757 
0.394337922617 
0.525663995528 
0.7 1427 1423746 
0.985060389731 
1.37561449412 
1.94193338406 
2.76700088699 
3.97437632751 
5.74887230925 
8.36757126135 
12.2467590407 
18.0133655273 
26.6137638895 
39.4795522908 
58.7805913213 
87.8118838110 
131.585889835 
197.740487538 
297.932522944 
449.979223858 
681.1 52558004 
1033.25274612 
1570.42985951 
2391.25395142 
3647.35908070 
5572.26775810 
8525.99348990 
13064.1 157676 
20044.8405790 
30795.0631275 
47368.1399675 
72944.3025390 

y = z  
Spherical, 

y = $  

1.333333333333 
0.31 746031 7460 
0.330964978584 
0.351087328915 
0.428702976041 
0.581262688522 
043341 6073327 
1.24182040572 
1.90667020627 
2.99573095341 
4.79335492559 
7.78505460535 
12.8028036868 
21.2785506061 
35.6880234991 
60.3290517468 
102.690500277 
175.866803349 
302.827404305 
523.983733067 
910.630204719 
1588.86850668 
2782.27435391 
4888.12883923 
8613.85327622 
15221.5900368 
26967.3254176 
47890.4406560 
852352928220 
152014.101220 
271633.152889 
486253.291668 
87 19 15.946437 
1565938.77695 
281 6584.06448 
5073195.16260 
9 149924.83352 
16523403.609 1 
29874379.4238 
54074091.6579 

Spherical, 

2~00000000000 
1~20000000000 
1.83333333333 
3.40035087719 
7.24262900585 
16.7325356185 
4042 12062145 
103.538798073 
270.351 164204 
72 1.973 134446 
1962.93555769 
5415.71 134591 
15125.3041521 
42681.0787588 
12 1509.247882 
348589.799633 
1006783.95686 
2925043.77 126 
8543 150.6 1409 
25069946.95 13 
73881275,4824 
218567708.399 
648869068.945 
1932484742.1 8 
5772286224.84 
17288250591.8 
51908194965.1 
156214990411 
471129305758 
1.42371888519 12 
4.31039960943 12 
1.30727810033 13 
3.97126124722 13 
1.20824798683 14 
3.68138936143 14 
1.12320678078 15 
3.43136709434 15 
1.04955212172 16 
3.21397456855 16 
9.85273540521 16 

y = 3  
Cylindrical, 

y = z  

1~2000000000000 
0.0933333333333 
0.0730864197531 
0.0577257959714 
0.0497185254748 
0.0473867537972 
0.0487020337051 
0.0525457596193 
0.0586078973893 
0.0670385267585 
0.0782473038694 
0.0928536362648 
0.1 11712634840 
0.135973603154 
0-167161791445 
0.207289223 128 
0.259004706586 
0.325795437783 
0.412256433109 
0.524449933038 
0.67038488971 2 
0.860657162621 
1.10930506416 
1.43495376450 
1.86234753012 
2,4244031561 3 
3.1649644041 9 
4.14250004943 
5.43507307638 
7.14102352524 
9.41796318002 
12.434891 2563 
16.4485262673 
21.7953372274 
28.9272839088 
38.4519908447 
51.1870510605 
68.2334756229 
9 1-075100091 3 
12 1.7 13200768 

TABLE 1. Coefficients X ,  in series (8) for shock wave 

showed that less than half a significant figure is lost to truncation and round-off 
errors in each step. Thus in a double-precision calculation, starting with 16 significant 
figures, only five figures of agreement remain a t  n = 25. We therefore carried out all 
final computations in quadruple-precision arithmetic, starting with 3 1 figures. We 
are confident that this leaves even the 40th approximation correct to a t  least 14 
figures. 

We have computed four cases: a spherical piston with y = 8,  $, and 3, and a cylin- 
drical piston with y = f .  Although the history of the entire flow field is represented 
by our series, we concentrate on a single global quantity, the location of the shock 
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FIGURE 2. Graphical ratio test of Domb & Sykes for series (8) for 

position of shock wave. -, 1.61(1- 1*717/n). 

wave. Table 1 lists the first 40 coefficients in its Taylor-series expansion (8), of which 
we have given the first three analytically in (15). For brevity we show them rounded 
to 12 figures, although in the subsequent analysis we have worked with at  least 16 
and where necessary all 31 figures. 

4. Analysis of the coefficients for the shock wave 
The coefficients are all positive, which means that the nearest singularity of the 

shock-wave function X ( t )  lies on the positive real axis oft .  We will verify that it is 
the Guderley singularity, corresponding to collapse of the shock wave onto the axis. 
The coefficients increase steadily in magnitude, indicating that the radius of con- 
vergence is less than unity, as it must be because the piston itself would reach the 
axis a t  t = 1.  They increase faster for the spherical than the cylindrical piston, because 
the focusing is more intense, and faster as the adiabatic exponent y increases, because 
according to tlhe Newtonian theory of hypersonic flow the shock wave hugs the 
piston when y = 1.  

We can estimate the radius of convergence by plotting the ratios X,/X,-, of 
successive coefficients versus l / n  (Domb & Sykes 1957), for if the nearest singularity 
has the form 

X ( t )  = C X ,  t n  N A,( 1 - t / t @  as t -+ t c  (16) 

then 

Figure 2 shows that for the spherical piston with y = f we can plausibly fit a linear 
asymptoteusing Guderley’s exponent a, = 0-717. Theintercept a t  1.61 yields t c  = 0.62 
to graphical accuracy. 

We refine this estimate of the radius of convergence by fitting polynomials in l/n, 
which is conveniently done by forming Neville tables (Gaunt & Guttmann 1974). 
Table 2 for the intercept shows that the result varies smoothly with n only in the 
first three columns. From these we estimate l / t c  = 1.609021 0.000002, so that 
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n Linear fit Quadratic Cubic Quartic Quintic 

35 1.53007606 1.60902299 1.60902320 1.60901781 1.60897478 
36 1.53226903 1.60902297 1.60902268 1*60901702 1.60901071 
37 1.53434346 1.60902294 1.60902240 1.60901919 1.60903714 
38 1.53630871 1.60902290 1.60902220 160901 988 1.60902569 

1.60901596 39 1.53817317 1.60902286 1.60902199 1.60901948 
40 1.53994441 1.60902280 1430902 180 1-60901946 1.60901928 

TABLE 2. Bottom left-hand corner of Neville table for reciprocal radius of 
convergence l/tc, for spherical piston with y = 5 

n Linear fit Quadratic Cubic Quartic Quintic 

35 0.7 172 797 0.7172883 0.7169526 0.7 134 154 0.6695954 
36 0.71 72794 0.7172668 0.7169034 0.7163687 0.7396590 
37 0.7172787 0.7 172546 0.7 170430 0.7186080 0.7368280 
38 0.7172779 0.7 172458 0.7 170882 0.7 176092 0.7092316 
39 0.7172768 0.7172363 0.7170609 0.7167365 0*7091971 
40 0.7172756 0.7172274 0.7170595 0.7 17043 1 0.7 197686 

TABLE 3. Bottom left-hand corner of Neville table for 
exponent al, for spherical piston with y = 8 

Linear 
7% t0  extrapolation Cubic Quartic Quintic 

35 0.6282083504 0.6214859 0.621496081 0.6214960435 0.6214960443 
36 0.6280216326 0-6214865 0.621496077 0.6214960448 0.6214960533 
37 0.6278450217 0.6214870 0.821496073 0.6214960443 0.6214960406 
38 0.6276777187 0.6214875 0*621496070 0.6214960432 04214960363 
39 0.6275190066 0.6214879 0.621496067 0.6214960427 0.6214960395 
40 0.6273682404 0.6214884 0.621496065 0.6214960425 0.6214960404 

TABLE 4. Selected columns from bottom of Neville table for time for shock wave to 
reach centre, for spherical piston with y = 

t ,  = 0.621 496 f 0.000001. Table 3 for the exponent is much more erratic, and we can 
only confirm Guderley’s value to his three figures. 

To verify that the nearest singularity corresponds to collapse of the shock wave 
onto the axis, we calculate the time to for X ( t )  to reach unity. In  table 4 the second 
column shows the values obtained using n terms of the series (8) for the spherical 
shock wave with y = f. These seem to be approaching our value of tc = 0.621496, 
and this is confirmed by forming a Neville table. I n  fact, table 4 is so much smoother 
than table 2 that it gives the radius of convergence to two more figures. For our other 
three cases the Neville tables are even better behaved. Thus we estimate with con- 

0.621 49 604 for spherical piston with y = :, 
0.529 15 2937 for spherical pist,on with y = g,  
0.31284 7355 for spherical piston with y = 3, 1 0.71394 2146 for cylindrical piston with y = 8, 

fidence 

t ,  = 

with a possible error of one unit in the last figure. 
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Geometry Y a1 a2 a3 A1 A ,  A ,  

Spherical 3 0.636411 1.638 2.5 1'016952 -0.0244 0.01 
Cylindrical 5 0.835324 2.033 3 0.983865 0.0133 0.01 

Spherical 5 0.7171745 2.045 3.4 0.981706 0.0140 0.007 
Spherical + 0.6883768 1.885 3.1 0.989732 0.0055 0.006 

TABLE 5. Exponents and amplitudes in Guderley's local expansion (19) 

5. Extraction of the local expansion 
Our 40-term series will yield accurate results throughout the flow field almost up 

to the instant of collapse. We now show that the local singular behaviour in that 
vicinity can also be extracted from our coeEcients with good accuracy. 

Guderley (1942) conjectured that in the neighbourhood of collapse onto the axis 
the history of the shock wave is described more precisely by an expansion of the 
form (in our notation) 

R ( t )  1 - X ( t )  N 2 Ai(1 - t / t c ) " i .  (19) 
i = l  

He computed only the first exponent a,, and the amplitudes Ai cannot be determined 
from local considerations. To extract this local expansion from our global solution 
we adopt a procedure devised by Baker & Hunter (1973) for estimating any number 
of exponents and corresponding amplitudes associated with a confluent singularity, 
given its location. We first form, from our series for R(t) ,  the expansion of an auxiliary 
function 9i' that is meromorphic and therefore amenable to study by the method of 
Pad6 approximants. 

I n  (19), using our estimates (18) for t c ,  we rewrite the series (8) for X ( t )  in powers 
of the auxiliary variable T defined by t = t c [  1 - exp ( - T ) ] ,  and then multiply the nth 
term by n !. Summing over n then yields the series for the auxiliary function 

This has simple poles a t  r = - l /ai  and corresponding residues Ai/ai .  We evaluate 
these by forming Pad6 approximants (Baker 1965) to 92(7). 

The [(N - l)/N] approximants, which are rational fractions with the denominator 
of degree one higher than the numerator, show the most consistent values for the 
poles and residues as N is varied up to our maximum possible value of 20. Thus we 
find the values listed in table 5 for the first three exponents and amplitudes in (19). 
We have checked most of these independently using Neville tables, and believe that 
they are correct to within one unit in the last figure given. For the first exponent 
this is confirmed by the values 0.717 17450, 0.68837682, 0-63641060 and 0.83532320 
given by Lazarus & Richtmyer (1977). Hunter & Baker (1973) have shown that the 
expected errors in the radius of convergence t c ,  leading exponent al, and amplitude 
A ,  stand in the ratio 1 :  N: In N ,  where N is the order of the last term in the series 
analysed. Our values in (18) and table 5 are in general agreement with this result. 
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Guderley (1942) 
Butler (1  954) 
Stanyukovich (1955) 
Brushlinskii & Kazhdan (1963) 
Welsh (1967) 
Goldman (1973) 
Lazarus & Richtmyer (1977) 
Fujimoto & Mishkin (1978) 
Mishkin & Fujimoto (1978) 

Spherical, 
y = ;  

0.717 
0.71 7173 
0.717 
0.7170 
0.7 17 174 

0.7 1717450 
0.707 

- 

- 

Spherical, 
y = Q  

0.688377 

0.68838 
0.688377 
0.688377 
0.68837682 
0.687 

- 

Spherical, 
y = 3  

- 
0.638 
0.6364 
0.63641 1 

0.63641060 
0.623 

- 

- 

Cylindrical, 
y = ;  

0.834 
0.83521 7 
0.834 

0.835323 

0.83532320 

0.828 

- 

- 

- 

TABLE 6. History of Guderley’s similarity exponent ct1 

6.  Discussion 
Although ours is a global solution, we have emphasized its singular behaviour near 

the instant of collapse, both because that is the most severe test, and because it 
represents the local problem that has been much studied since it was first considered 
by Guderley ( i 942). 

Table 6 shows the history of values computed for Guderley’s similarity exponent 
ctl in our four cases. The values in table 5 that we have extracted from our 40-term 
series are seen to agree with all previous results from 1942 to 1977, and to be exceeded 
in accuracy only by the very precise calculations of Lazarus & Richtmyer. 

Wre disagree, however, with the recent values of Fujimoto & Mishkin (1978) and 
Mishkin & Fujimoto (1978). We are indebted to Nelson Kemp for pointing out that 
the analytic solution proposed by those authors is just the approximation introduced 
by Stanyukovich (1955) in his equation (64; 80), which he characterizes as ‘almost 
exact ’. 

Our determination of Guderley’s local expansion turns out to yield remarkable 
accuracy - a t  least for the piston motions that we have considered - not only near 
the collapse but even a t  the start. We see from table 5 that over its whole course the 
radius of the converging shock wave is given correct to within 2 yo by just the first 
term, and within less than 4 yo by the first three terms. 

If the piston motion is altered - for example, to constant acceleration instead of 
constant speed - the time tc for the shock wave to reach the axis and the amplitudes 
Ai in Guderley’s local expansion (19) will all change, but the similarity exponent ctl 
will remain unchanged. More precisely, this is certainly the situation when the 
adiabatic exponent y of the gas is less than a critical value yc,  which Brushlinskii & 
Kazhdan ( 1  963) both calculate as 1.87 for a spherical shock wave. Lazarus & Richtmyer 
(1977) refine this to 1-8697680, and give yc L- 1.9092084 for cylindrical flow. Welsh 
suggests that there is no physical significance to this critical value, across which the 
transition is smooth, and that the local self-similar solution is unique for all y.  On the 
other hand, Brushlinkskii & Kazhdan (1963) report that in 1956 Kazhdan, Alalykin 
and Osserovich discovered that for any y > yc  there exists a whole series of possible 
values for the similarity exponent a1 that correspond to analytic solutions. According 
to Barenblatt (1979) Gel’fand has conjectured that the smallest value is always 
realized; and we see that this happens for our spherical piston with y = 3. However, 
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we presume that a piston motion could be contrived to realize any one of the higher 
values instead. 

It is interesting to ask whether the subsequent exponents az, a3, ... in the local 
expansion are also universal, depending on the adiabatic exponent of the gas and the 
number of space dimensions but independent of how the shock wave is produced. 
That question could be answered numerically by treating a different piston motion 
by our method, or better by perturbing Guderley's solution. 

The values in table 5 have led us to conjecture that the exponents are equally 
spaced. For example, a2 is greater than a1 by 1.328 for the spherical geometry with 
y = f, and if a3 were greater again by the same amount it would equal 3.373, which is 
consistent with our estimate. The accuracy of our analysis allows just a hint of a 
fourth exponent, with a value between 4 and 5; and that too is consistent with equal 
spacing. Recently Lazarus (private communication) has confirmed analytically our 
conjecture of equally spaced exponents under certain plausible assumptions. 

Often a singularity in any one flow quantity corresponds to singularities in all the 
others. Here, however, Joseph Keller has pointed out that the collapse of the shock 
wave will only a t  later times affect the body of the flow. To illustrate this, we have 
examined the series for the pressure on the surface of the piston. The Domb-Sykes 
plots are not as smooth as figure 2, but show a long-period oscillation, and Neville 
tables are correspondingly more erratic. However it is clear that for our spherical 
piston with y = the nearest singularity lies a t  t = 0.90, whereas the shock wave 
collapses a t  t = 0.62. This singularity correspoqds to the outgoing characteristic from 
the point of collapse, which would appear in the flow field except that the reflected 
shock wave appears first. It remains implicit in our series as a limiting line, an envelope 
of outgoing characteristics (Butler 1954). 

The technique of computer-extended perturbation series used here is relatively new 
in fluid mechanics, and still under development. It is so far limited to simple geo- 
metries; and even then it has in some cases led to surprising and hence controversial 
results (e.g. Van Dyke 1978). However, the treatment of progressive water waves by 
Schwartz (1 974) is generally regarded as a triumph of the method; and we believe that 
the present application demonstrates again that in favourable cases it yields results 
that can scarcely be obtained in any other way. 

This work was supported in part by the Office of Naval Research under Contract 
number N00014-78-C-0373. We have benefited from discussion with Joseph Keller, 
Nelson Kemp and Roger Lazarus. 
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